Cancer Treatments May Affect Cognitive Function By Accelerating Biological Aging

Release Date:
Monday, November 26, 2018 12:01 am EST

Terms:
Cancer All Journals and Research Health Sciences Psychology

Dateline City:
Hoboken, N.J

Contacts:
Dawn Peters (US) +1 781-388-8408 newsroom@wiley.com

CANCER News Alert
Embargo/Online Publication Date: 00:01 Hours ET, Monday, November 26, 2018 [05.01 Hours UK Time (GMT)/16:01 Hours Australian Eastern Daylight Time (AEST), November 26]

Cancer treatments are suspected to accelerate certain aging processes in the body. A new study has found that indicators of such biological aging correlate with declines in cognitive function in women who had undergone breast cancer treatment several years earlier.

Cancer treatments are suspected to accelerate certain aging processes in the body. A new study has found that indicators of such biological aging correlate with declines in cognitive function in women who had undergone breast cancer treatment several years earlier. Published early online in CANCER, a peer-reviewed journal of the American Cancer Society, the findings point to an aging-like effect of cancer treatments and further connect this to cognitive decline.

Treatments for breast cancer increase patients’ risks for long-term and late toxicities, including persistent fatigue, pain, and cognitive dysfunction. Certain treatments, including radiation and some chemotherapeutic drugs, work by damaging the DNA of cancer cells, but they can also cause damage to DNA of normal cells, which can contribute to accelerated biological aging.

To examine whether indicators of biological aging are related to cognitive function in breast cancer survivors, Judith E. Carroll, PhD, Associate Professor of Psychiatry, of the UCLA Cousins Center for Psychoneuroimmunology and the Semel Institute for Neuroscience and Human Behavior, and her colleagues evaluated a group of 94 women who had been treated for breast cancer three to six years earlier. The indicators of biological aging included elevated levels of DNA damage, reduced telomerase enzymatic activity, and shorter telomere length in certain blood cells. (Telomerase is an enzyme that is important for maintaining the length of telomeres, repeat sequences of DNA at the ends of chromosomes that help maintain the health of cells and serve as a marker of cell age.)

The team found that women who had previously been treated for breast cancer who had both higher DNA damage and lower telomerase activity had lower executive function scores. In addition, lower telomerase activity was associated with worse attention and motor speed. Telomere length was not related to any of the neurocognitive domains.

“These findings are important because they provide further information about what might be happening after cancer treatment that impacts cognitive decline in some individuals. This information can inform future research and may lead to new interventions to prevent these cognitive declines,” said Dr. Carroll, who is also a member of the UCLA Jonsson Comprehensive Cancer Center. “The work is novel by identifying key factors in biological aging and connecting them to cognitive function, which initiates new avenues of research.”

Additional Information

NOTE: The information contained in this release is protected by copyright. Please include journal attribution in all coverage. A free abstract of this article will be available via the Cancer News Room upon online publication. For more information or to obtain a PDF of any study, please contact:

Dawn Peters (US) +1 781-388-8408
Full Citation:

Author Contact: Duane Bates, of the Communications Department of UCLA Health, at DBates@mednet.ucla.edu or +1 310-206-4430 x009.

About the Journal

CANCER is a peer-reviewed publication of the American Cancer Society integrating scientific information from worldwide sources for all oncologic specialties. The objective of CANCER is to provide an interdisciplinary forum for the exchange of information among oncologic disciplines concerned with the etiology, course, and treatment of human cancer. CANCER is published on behalf of the American Cancer Society by Wiley and can be accessed online at http://wileyonlinelibrary.com/journal/cancer.

Follow us on Twitter @JournalCancer

About Wiley

Wiley is a global leader in research and education. Our online scientific, technical, medical, and scholarly journals, and our digital learning, assessment, certification and student-lifecycle services and solutions help universities, academic societies, businesses, governments and individuals to achieve their academic and professional goals. For more than 200 years, we have delivered consistent performance to our stakeholders. The Company’s website can be accessed at www.wiley.com.

Language: English